[[Functional analysis MOC]]
# Dirac orthonormality
A set of kets $\ket{f_{p}}$ where $p \in \mathbb{R}$ is said to be **Dirac orthonormal**[^2018] iff #m/def/anal/fun
$$
\begin{align*}
\braket{ f_{p'} | f_{p'} } = \delta(p-p)
\end{align*}
$$
where $\delta$ is the [[Dirac delta]],
and in addition complete iff
$$
\begin{align*}
\int _{D} \ket{f_{z}} \bra{f_{z}} \, dz = \mathbf{I}
\end{align*}
$$
[^2018]: 2018\. [[Sources/@griffithsIntroductionQuantumMechanics2018|Introduction to quantum mechanics]], §3.3.2, p. 100
#
---
#state/develop | #lang/en | #SemBr